
11 The lasso

lasso = Least Absolute Selection and Shrinkage Operator
The lasso has been introduced by Robert Tibshirani in 1996 and represents another modern approach
in regression similar to ridge estimation. He described it in detail in the text book ”The Elements
of Statistical Learning” by Hastie, T, Tibshirani, R, Friedman, J (2nd edition) Springer, available
online at http://statweb.stanford.edu/ tibs/ElemStatLearn/
The benefits and properties for ridge and lasso estimators are quite different.
In ridge regression we aimed to reduce the variance of the estimators and predictions which is
particularly helpful in the presence of multicollinearity.
Lasso is a tool for model (predictor) selection and consequently improvement of interpretability.
Interestingly both ridge and lasso estimators are the solutions of very similar optimization problems
Ridge:

β̂R(k) = argmin
β̂∗

||~y −Xβ̂∗||22 + k||β̂∗||22

Lasso:
β̂lasso(λ) = argmin

β̂∗
||~y −Xβ̂∗||22 + λ||β̂∗||1

The only difference is that the penalty term for lasso uses the l1 norm and ridge uses the squared l2
norm.

||~x||1 =

p∑
i=1

|xi|, ||~x||2 =

√√√√ p∑
i=1

x2i

The circles of radius r := {~x | ||~x|| ≤ r} implied by these two norms are shown in the figure

This difference has a stark implication on the solution of the two optimization problems, where the
ridge estimator shrinks the slope estimates, but even for large k not necessarily to 0, the lasso will
shrink the estimates to 0 for sufficiently large λ, which helps with model selection.
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11.1 Variable Selection Problem

In the presence of many predictors (large p) it is often not clear which of them are most relevant in
the relationship with the response. This makes the interpretation foggy and and unclear.
The most common solution to this problem is to choose a subset of predictors, which appear to be
most important, based on trial and error using p-values to guide whether a variable should be in the
model or not. Forward and backward selection procedures are examples for these.
However, this approach is data driven and will potentially result in different models each time a
sample is chosen (small changes in the data can result in very different results). The study of the
statistical properties of the models chosen by these algorithms is almost impossible.
A more systematic approach is to exhaustively search all possible subsets and then use some sort
of criterion such as R2

adj, AIC, or BIC to choose an optimal predictor subset. Unfortunately this
becomes infeasible for large p.
Test results in such chosen models become unreliable, because their assumptions are now violated
(i.e. we propose a model to describe a population, randomly choose data to draw conclusions about
this model and therefore about the population).
A more systematic approach, which will be consistent (small changes will not result in entirely
different models), which permits statistical analyses for the resulting model, and would improve the
reliability would provide a great advancement in the application of regression methods for model
selection.

11.2 The lasso

It is
β̂lasso(λ) = argmin

β̂∗
||~y −Xβ̂∗||22︸ ︷︷ ︸

loss

+λ ||β̂∗||1︸ ︷︷ ︸
penalty

The ellipses in the figure represent sets of pairs, (β1, β2), with equal loss, ||~y −Xβ̂∗||22. For a given
λ, β̂lasso(λ) is equal to (β1, β2) on the ellipse with loss ||~y −Xβ̂lasso(λ)||22 with smallest l1 norm.
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More mathematical β̂lasso(λ) is the solution of

minβ̂∗ ||β̂∗||1
subject to ||~y −Xβ̂∗||2 = ||~y −Xβ̂lasso(λ)||2

If the ellipse for a given λ is intersected by an axis the respective component of β̂lasso(λ) is 0, because
the ellipses (ellipsoids for higher dimensions) are convex. Since the ellipsoids will increase indefinitely
for increasing λ, there exists a sufficiently large λ0 such that β̂lasso(λ0) = ~0.
Also β̂lasso(0) = β̂ and the number of non-zero entries in β̂lasso(λ) is decreasing in λ, because when λ
increases so does the ellipsoid, potentially intersecting more axes.
Plotting the paths of lasso coefficient for λ > 0 visualizes the effect of the increase in the importance
of the penalty term on the coefficients and them dropping to 0.

Comment:
There is no closed form expression for calculating β̂lasso(λ). For each λ the coefficient vector has
to be found through iterative processes. This is a numerically challenging problem, which has been
greatly improved by LARS (an algorithm introduced by Trevor Hastie and Brad Efron).

Example 11.1.
Data from Stamey, T.A. et al. (1989)Prostate specific antigen in the diagnosis and treatment of
adenocarcinoma of the prostate: II. radical prostatectomy treated patients, Journal of Urology 141(5),
10761083. now available in the lasso2 library will be used for this example.
The observations are prostate cancer patients and the following variables

lcavol = log(cancer volume)

lweight = log(prostate weight)

age

lbph = log(benign prostatic hyperplasia amount)

svi seminal vesicle invasion

lcp = log(capsular penetration)

gleason = Gleason score

pgg45 = percentage Gleason scores 4 or 5

lpsa = log(prostate specific antigen)

R code:

library(lasso2) # to get the data

data(Prostate)

Prostate

library(glmnet) # library including functions for finding the lasso

# glmnet requires design matrix and response variable

x<-(apply(Prostate[,-9],2,as.numeric))

y<-(Prostate[,9])

lassofit<-glmnet(x,y)
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print(lassofit) # DF gives the number of non-zero coefficients

par(mfrow = c(1, 2))

plot(lassofit, xvar="lambda")

plot(lassofit, xvar="norm")

par(mfrow = c(1, 1))

coef(lassofit)

Partial output(Shows the number of non-zero entries in dependency on λ):

Call: glmnet(x = x, y = y)

Df %Dev Lambda

[1,] 0 0.00000 0.843400

[2,] 1 0.09159 0.768500

[3,] 1 0.16760 0.700200

[4,] 1 0.23070 0.638000

[5,] 1 0.28320 0.581300

[6,] 1 0.32670 0.529700

[7,] 1 0.36280 0.482600

[8,] 1 0.39280 0.439800

[9,] 2 0.42210 0.400700

[10,] 2 0.44900 0.365100

[11,] 2 0.47130 0.332700

[12,] 2 0.48980 0.303100

[13,] 3 0.51250 0.276200

[14,] 3 0.53180 0.251600

[15,] 3 0.54790 0.229300

etc.

To visualize:
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The left figure shows how the coefficients start to decrease and finally all drop to zero as the penalty
becomes more important (larger log(lambda)). The right figure shows the same but plotted against
the penalty (||β̂lasso(λ)||1). As the norm of the vector is small many of the coefficients are 0 or close
to 0. As the norm increases the coefficients deviate from 0 and in the end all are different from 0.

The results from this analysis indicates the order in which the variables should be dropped from the
model as the importance of the penalty increases, but it does not answer which model should be
chosen, i.e. which λ results in the ”best” model.

11.3 Choosing λ

For changing λ the number of variables with coefficients different from 0 changes. Which of the
model should we choose. One could make the decision based on AIC or BIC (we are comparing
models and these were measures proposed before to measure model fit).

Another possibility is to apply Cross Validation for making this choice.
For Cross Validation the sample is split into K folds, F1, . . . , Fk, of equal size (or as close as possible).
Then the model is fit K times: each time omitting one of the folds (let’s say i) for estimating the
model parameters.
The outcome of this estimation is then cross validated by comparing the actual measurements with
their prediction for all data in the omitted fold k:

ei(λ) =
∑
j∈Fi

(yj − ŷj(λ))2

The CV error (also called the cross validation mse) is the error averaged over the K folds.

CV (λ) =
1

n

K∑
i=1

ei(λ)

When K = n we call this the leave-one-out cross validation. More common choice for K are five or
ten.
A plot of the cross-validation error against λ usually shows first a decrease in CV (λ) and then an
increase. Choose λ such that the cross validation error is smallest.

λ̂ = argmin
λ

CV (λ)

Experimenters have found this choice very conservative not eliminating ”sufficiently many” predictors
from the model.

The following modification has been suggested based on the principle:
”All else being equal (up to one standard error), go for the simpler model”.(Ryan Tibshirani)

Given that the cross validation error can be estimated for each fold by

ei(λ)

ni
=

1

ni

∑
j∈Fi

(yj − ŷj(λ))2
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where ni is the sample size in Fi, it is possible to estimate the standard error of the cross validation
error based on those K estimates (for each λ). This gives rise to the

The one standard error rule
We first find the usual minimizer λ̂ and then define λ̂∗, as the largest λ such that the cross validation
error curve is still within one standard error of CV (λ̂).

λ̂∗ = max
CV (λ)≤CV (λ̂)+SE(λ̂)

λ

R code:

# Cross Validation

cvlassofit<-cv.glmnet(x,y)

print(cvlassofit)

plot(cvlassofit)

coef(cvlassofit, s = "lambda.min") # to get the coefficients for the "optimal" lambda

coef(cvlassofit, s = "lambda.1se") # to get the coefficients for the one SE lambda

Partial output (now showing choices for λ based on cross validation):

etc.

[61,] 8 0.65460 0.003175

[62,] 8 0.65460 0.002893

[63,] 8 0.65460 0.002636

[64,] 8 0.65470 0.002402

[65,] 8 0.65470 0.002189

[66,] 8 0.65470 0.001994

[67,] 8 0.65470 0.001817

[68,] 8 0.65470 0.001656

[69,] 8 0.65470 0.001509

[70,] 8 0.65470 0.001375

$lambda.min

[1] 0.005549189

$lambda.1se

[1] 0.2292932

attr(,"class")

[1] "cv.glmnet"

And to
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The vertical lines in the figure show λ̂ (left) and λ̂∗ (right). The numbers on top of the figure give the
number of non-zero coefficients. Which means that for this example instead of using seven predictors
we would be using three predictors for the selected model if we would choose the one standard error
estimate.
At this point one should go back and reestimate the model using the BLUE based on the variables
chosen.
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